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We consider quantum decoherence in solid-state systems by studying the transverse dynamics of a single
qubit interacting with a fermionic bath and driven by external pulses. Our interest is in investigating the extent
to which the lost coherence can be restored by the application of external pulses to the qubit. We show that the
qubit evolution under various pulse sequences can be mapped onto Keldysh path integrals. This approach
allows a simple diagrammatic treatment of different bath excitation processes contributing to qubit decoher-
ence. We apply this theory to the evolution of the qubit coupled to the Andreev-fluctuator bath in the context
of widely studied superconducting qubits. We show that charge fluctuations within the Andreev-fluctuator
model lead to a 1 / f noise spectrum with a characteristic temperature depedence. We discuss the strategy for
suppression of decoherence by the application of higher-order �beyond spin echo� pulse sequences.
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I. INTRODUCTION

The loss of coherence of a quantum two-level system
�quantum bit� is caused by its unavoidable coupling to the
surrounding environment. For solid-state qubits, the decoher-
ence process can be quite fast due to coupling to a large
number of internal degrees of freedom �DOFs�. Our under-
standing of quantum decoherence and methods for its sup-
pression in a realistic solid-state environment is mainly con-
fined to the cases of a qubit interacting with bosonic1–3 and
nuclear spin baths,4–6 the so-called �and extensively studied�
spin-boson and spin-bath models, respectively. A less well-
understood but very relevant case for solid-state quantum
architectures is that of a qubit coupled to a fermionic
bath,7–13 which dramatically differs from the previous ex-
amples. In this paper we study the quantum decoherence in
the context of a superconducting charge qubit14–20 interacting
with the nontrivial bath of Andreev fluctuators.21–23 This
problem is a paradigmatic spin-fermion decoherence prob-
lem and applies to many situations involving the quantum
coupling of a qubit �“spin”� to a general fermionic environ-
ment. Using a many-body Keldysh path integral
approach,9,10,24–26 we obtain a quantum-mechanical descrip-
tion of the qubit evolution under pulse sequences aimed at
prolonging the coherence of the system. The simplest case of
decoherence under pulses is the spin echo �SE� dephasing
experiment, which has been shown to extend the coherence
time of solid state �superconducting� qubits15,17,27 by essen-
tially eliminating the quasistatic shifts of qubit energy split-
ting �inhomogeneous broadening� due to the slow environ-
mental fluctuations. However, sequences involving more
pulses, for example, Carr-Purcell-Meiboom-Gill �CPMG�28

and Uhrig’s2,29 sequences, are expected to lead to a further
increase in the coherence time.2,29–37

In this paper, we consider an experimentally relevant
example—a superconducting qubit coupled to fluctuating
background charges,18,19 e.g., electrons residing on
Anderson-impurity sites. Due to a large on-site Coulomb re-
pulsion forbidding double occupancy, this example repre-
sents a nontrivial interacting bath. The dynamics of the

charge fluctuations on the impurity sites is determined by the
hybridization of impurity levels with the quasiparticle band
of the superconductor. To the lowest order in tunneling at the
superconductor-insulator interface, the hybridization of the
impurity levels can be described by a correlated tunneling
event of two electrons with opposite spin to or from the
superconductor. We show that in the small background-
charge density limit, these fluctuations lead to a 1 / f spectral
density of noise. Using these results, we finally obtain the
quantum-mechanical description of the qubit evolution
driven by external pulses, and discuss an optimal strategy for
the suppression of the decoherence with designed composite
pulse sequences.

The paper is organized as follows: In Sec. II we provide a
general derivation of the qubit evolution with pulses and map
the calculation of decoherence function onto the Keldysh
path integral formalism. In Secs. III and IV we introduce the
Andreev-fluctuator bath and derive spectral density of noise
for this model. Finally, in Sec. V we discuss the influence of
pulse sequences on the qubit decoherence.

II. GENERAL THEORY FOR QUBIT EVOLUTION

The transverse dynamics of a qubit interacting with its
environment is determined by the following Hamiltonian:

Ĥ =
E

2
�̂z + �̂zV̂ + ĤB. �1�

Here the environment is represented by a fermionic bath ĤB
and the qubit is coupled to the environment through the den-
sity fluctuation operator,

V̂ = �
l�

vl�cl�
† cl� − �nl��� . �2�

This model corresponds precisely to the coupling of a super-
conducting charge qubit to the density fluctuations on the
impurities in the substrate. Here cl� and cl�

† are the fermionic
annihilation, and creation operators at the lth site with spin �
and vl and �nl�� are, respectively, the strength of the coupling
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and average occupation of the lth impurity, i.e., �nl��
= �cl�

† cl��. Equations �1� and �2� define our spin-fermion
model.

We study the evolution of the qubit in contact with a
fermionic bath assuming the qubit energy relaxation time T1
to be much longer than the quantum dephasing time T2 �thus
only �̂z coupling is present in the Hamiltonian�. Qubit deco-
herence under the influence of the environment is given by
the off-diagonal matrix elements of the qubit’s reduced den-
sity matrix, and for the free evolution of the qubit we get
��=1�

�+−�t� = �+ �TrB��̂�t���− � = �+−�0�e−iEtW�t� . �3�

In the above �̂�t� is the density matrix of the whole system
�qubit+bath�, which is assumed to be factorizable at t=0,
TrB�. . .� is the trace with respect to the bath DOFs, and W�t�
is the decoherence function defined as

W�t� = �ei�ĤB−V̂�te−i�ĤB+V̂�t� , �4�

with the brackets representing the thermal average with re-

spect to the bath Hamiltonian ĤB, i.e., �¯�=TrB��̂B¯�. The
time t always refers here to the total time of the evolution.

In addition to the free evolution of the qubit 	free induc-
tion decay �FID�
, one is often interested in the dynamics of
the system subject to external � pulses2,29–37 which could, in
principle, prolong or restore quantum coherence. The �
pulses considered here correspond to the rotations of the qu-
bit’s Bloch vector by angle � about, e.g., the x̂ axis, and are
short enough for the bath dynamics during the pulse duration
to be negligible. Then, the evolution operator for qubit and
bath is given by

Û�n��t� = �− i�ne−iĤ�n+1�̂xe
−iĤ�n

¯ �̂xe
−iĤ�1, �5�

with n and �i being the number of applied pulses and time
delays between the pulses, respectively, and the total evolu-
tion time t=�i=1

n+1�i. One can see that the well-known Hahn
SE sequence, for example, corresponds to a single pulse with
�1=�2= t /2.

Using the fact that in the “pure dephasing” case under
consideration, the qubit states �� � are the eigenstates of the
Hamiltonian 	�Eq. �1�
, we can write the decoherence func-
tion under the influence of pulses as

Wn�t� = ��Û−
�n��t��†Û+

�n��t�� , �6�

with the evolution operators Û�
�n��t� given by

Û+
�n��t� = e−i�ĤB+V̂��n+1e−i�ĤB−V̂��n

¯+ e−i�ĤB+pV̂��1,

Û−
�n��t� = e−i�ĤB−V̂��n+1e−i�ĤB+V̂��n

¯ e−i�ĤB−pV̂��1, �7�

where p= �−1�n is the parity of the sequence. Then, the off-
diagonal elements of the qubit density matrix are given by

�+−�t� = �p,−p�0�e−ipE��1−�2+¯+p�n+1�Wn�t� . �8�

Here the phase factor is zero for all balanced sequences 	for

which the total times of evolution due to Ĥ+ V̂ and Ĥ− V̂ are
the same in Eq. �7�
. The evolution of the qubit under the SE

sequence, for example, acquires a simple form

�+−
SE�t� = �−+�0��eiĤ+t/2eiĤ−t/2e−iĤ+t/2e−iĤ−t/2� , �9�

with Ĥ�= ĤB� V̂.
Decoherence under pulses has been analyzed with meth-

ods specific to the spin-boson model2,29 and the spin-bath
model,5,6 or using operator algebra.33,34,36 The latter ap-
proach, although very general, does not allow for transparent
understanding of physics of the bath. However, the evalua-
tion of Wn�t� defined in Eq. �6� can be mapped onto the
evolution on the Keldysh contour,38 putting the calculation of
decoherence into the framework of many-body theory. Simi-
lar formalism has been used to study full counting statistics
of a general quantum-mechanical variable and has proved to

be quite convenient.24,25 The evolution operators Û�
�n� can be

written as

Û�
�n��t� = T exp�− i�

0

t

	ĤB � fn�t��V̂
dt� , �10�

where T is the time-ordering operator. The function fn�t��
encodes a particular sequence and is defined as

fn�t�� = p�
k=0

n

�− 1�k��tk+1 − t����t� − tk� , �11�

where ��t�� is the Heaviside step function, tk with k
=1, . . . ,n are the times at which the pulses are applied, t0
=0, and tn+1= t. Thus, the product of operators inside the
average in Eq. �6� corresponds to �reading from left to right�
the time-ordered evolution from 0 to t �with +V̂ coupling�,
followed by the time-antiordered evolution from t to 0 �with

−V̂ coupling�. We can then introduce the Keldysh contour C
	see Fig. 1�a�
 together with the notion of contour ordering of
operators.26,38 The qubit-bath coupling takes then two oppo-
site signs on the upper and lower branchs of the contour:

V̂C= � V̂. While fn�t�� is nonzero only for t�� 	0, t
, we can
extend the limits of time integration on both branches to
	−	 ,	
. The evolution from t�=−	 allows one to include the

adiabatically turned-on interactions in ĤB �see, for example,
Ref. 26�, paving the way to the treatment of decoherence in
an interacting fermionic bath. The final result is most com-
pactly written as a functional integral with the Grassmann

fields 
̄l and 
l defined on the Keldysh contour,9,10,26,38

FIG. 1. �a� Dependence of V̂C�t� on time along the Keldysh
contour. �b� The plot of the function fn�t�� for the SE sequence �n
=1�.
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Wn�t� =�TC exp�− i�
C

dt�	ĤB + V̂Cfn�t��
��
=

1

ZB
� D
̄lD
l exp�iSB	
̄,

 − i�

C

dt��
l�

vl�t��fn�t��

�	
̄l��t��
l��t�� − �nl��
� , �12�

where the integration is performed on the contour C shown
in Fig. 1�a�, vl�t��= �vl on the upper and lower branches of
the contour, and the normalization constant is defined as the

functional integral with V̂=0. The bath action SB=S0+Sint,
and the functional integration with noninteracting S0 corre-
sponds to averaging over an equilibrium noninteracting den-
sity matrix at t�=−	. This formulation of the decoherence
problem enables one to use techniques and approximations
developed in many-body theory. It also allows for a transpar-
ent treatment of the physics of the bath while simply encod-
ing the driving of the qubit in a single function of time fn�t��.

III. ANDREEV-FLUCTUATOR BATH

In order to evaluate the functional integral �12�, one needs
to specify the bath Hamiltonian. Here, as an example, we
consider a nontrivial bath of Andreev fluctuators,21–23 which
describes the fluctuations of the occupation of impurities
close to the insulator-superconductor interface due to An-
dreev processes. This model takes into account coherent pro-
cesses of creation �destruction� of the Cooper pair in the
superconductor by correlated tunneling of two electrons from
�to� different impurity sites in the insulator22,39 �see also Fig.
2�. In the limit when the superconducting gap energy � is the
largest relevant energy scale in the problem �T ,E , j ���,
the effective Hamiltonian for the Andreev-fluctuator bath,
after integrating out superconducting DOFs, is given by

ĤB = �
l�

lcl�
† cl� + U�

l

n̂l↑n̂l↓ + �
l�j

	Alj
� cl↑

† cj↓
† + H.c.
 .

�13�

Here, l and U are the energies of a localized electron on the
lth impurity �measured with respect to the Fermi energy F

of the conduction electrons� and repulsive on-site interaction
�assumed to be large enough to prevent double occupation of
the sites�, respectively. The matrix elements Alj in the limit
of the low transparency barrier between the insulator and
superconductor are given by

Alj � A0
sin�pF�rl − r j��

pF�rl − r j�
e−�rl−rj�/��. �14�

Here pF is the Fermi momentum, and � is the coherence
length in a clean superconductor. The amplitude A0
=2�2d2aN�0�T0

2 is determined by the tunneling matrix ele-
ment between the insulator and superconductor T0, the nor-
mal density of states in the metal N�0�=mpF /�2, the local-
ization length under the barrier d, and the size of the
impurity wave function a.22

Given the Hamiltonian 	Eq. �13�
, the action for the bath
on the Keldysh contour can be written as

SB	
̄,

 = �
lj
�

C

dt��
�

�lj
̄l��t���i�t� − l − U�nl,−���
l��t��

+ Alj
� 
̄l↑�t��
̄ j↓�t�� + Alj
 j↓�t��
l↑�t�� . �15�

Here we used the mean-field approximation for the
Anderson-impurity model assuming that the Kondo tempera-
ture TK is smaller than the superconducting gap �, which is
reasonable in the situation at hand when the impurities are
located in the substrate and the tunneling matrix element T0
coupling them to the states in the superconductor is small.
The occupation probabilities �nl�� are obtained self-
consistently using

�nl�� =� d�

2�
nF���	Gll�

A ��� − Gll�
R ���
 �16�

�see Ref. 40 for more details�. Performing a Keldysh
rotation,26,38 one can calculate the full Green’s function

Ĝll��t , t�� for the bath �see Fig. 3�,

Ĝll�
−1 �t,t�� = Ĝll�

−1 �t,t�� − �̂ll��t,t�� . �17�

Here Ĝll�
−1 �t , t� is the bare Green’s function 	see Eq. �15�
, and

the self-energy �̂ll��t , t�� is calculated to the second order in
Aij giving the components of the self-energy matrix

�ll�
A/R�t,t�� = �

j�l

�Alj�2Gjj,−�
R/A �t�,t� , �18�

FIG. 2. �Color online� Correlated tunneling of two electrons
with opposite spins from the impurity sites in the insulator into the
superconductor. An electron from the ith impurity with energy be-
low the gap � tunnels into the superconductor, propagates over
distances of the order of coherence length �, and recombines with
another electron with opposite spin from the jth site into a Cooper
pair. The amplitude for such Andreev processes decays exponen-
tially with distance between the impurity sites Alj �exp�−�rl

−r j� /���, see Eq. �14�.

FIG. 3. �Color online� Dyson’s equation for the retarded Green’s
function GR in the Born approximation. Here we have adopted the
convention of Ref. 38. The advanced and Keldysh Green’s func-
tions are obtained analogously resulting in Eqs. �18� and �19�.
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�ll�
K �t,t�� = �

j�l

�Alj�2Gjj,−�
K �t�,t� . �19�

In Eqs. �18� and �19� we have neglected the off-diagonal
terms in the impurity indices, i.e., �lj���lj�ll�. Since the
amplitude Alj oscillates on the length scale of pF

−1, the con-
tribution of these off-diagonal terms to the self-energy is
small.

Using the above results, the action for the bath can be

written in terms of the full Green’s function Ĝll��t , t��. Then,
the decoherence function becomes

Wn�t� � exp	− �n�t�


=
1

ZB
� D
̄D
 exp�i�

l�
�

−	

	

dt1�
−	

	

dt2

�� �
a,b=1

2


̄l�
�a��t1�	Ĝll�

−1 �t1,t2�
ab
l�
�b��t2�

− 2��t1 − t2�vl f
�n��t1�	�l��t1� − �nl��
�� . �20�

Here, �l��t� corresponds to the fermion density operator

�l��t�= 1
2 	
̄l�

�1��t�
l�
�2��t�+ 
̄l�

�2��t�
l�
�1��t�
; the fields 
�1��t� and


�2��t� are given by the appropriate superposition of the fer-
mionic fields on the upper and lower parts of the Keldysh
contour, see Ref. 26. After performing the functional integral
over the fermionic fields and expanding to the second order
in vl, one finds

�n�t� = �
l�

vl
2

2
�

0

t �
0

t

dt1dt2fn�t1�fn�t2�	Gll�
A �t1,t2�Gll�

R �t2,t1�


+	Gll�
R �t1,t2�Gll�

A �t2,t1� + Gll�
K �t1,t2�Gll�

K �t2,t1�
 . �21�

Equation �21� holds whenever the short-time expansion is
valid. The long-time asymptote can be obtained by resum-
ming the whole series.9,10

By introducing the Fourier transform of the Green’s func-
tions, Eq. �21� can be formally recast as

�n�t� = �
−	

	 d�

2�

Fn��t�
�2 SQ��� . �22�

Here Fn��t�=�2�fn����2 /2 is a sequence-specific filter func-
tion, the role of which we discuss in Sec. V. Thus, to the
second order in vi we obtain �n�t� having the same structure
as in the case of a qubit coupled to the spin-boson bath or
classical noise,2,29,37,41 i.e., �n�t� is the integral of the product
of the environment-specific spectral density of noise SQ���
and sequence-specific filter function Fn��t�. The spectral
density of quantum noise SQ��� in the spin-fermion problem
is given by

SQ��� = �
l�

vl
2�

−	

	 d�

2�
�Gll�

A �� +
�

2
�Gll�

R �� −
�

2
�

+ Gll�
R �� +

�

2
�Gll�

A �� −
�

2
�

+ Gll�
K �� +

�

2
�Gll�

K �� −
�

2
�� . �23�

In the frequency domain, the full Green’s functions are

Gll�
A/R��� =

1

� − l − U�nl,−�� − �ll�
A/R���

,

Gll�
K ��� = tanh� �

2T
�	Gll�

R ��� − Gll�
A ���
 , �24�

where the self-energy �ll�
A/R��� is defined as

�ll�
A/R��� = �

j�l

�Alj�2

� +  j + U�nj�� � i�
. �25�

Equation �23� defines the noise spectral density in the
quantum-mechanical many-body language, and thus enables
a direct calculation of decoherence in various situations, as
we consider next.

IV. SPECTRAL DENSITY OF NOISE DUE TO ANDREEV
FLUCTUATORS

In general, the solution for SQ��� with many Andreev
fluctuators can be obtained numerically by randomly gener-
ating the energies l and positions rl of the impurities at the
insulator-superconductor interface. The numerically obtained
spectral density of noise SQ��� for 50 fluctuators is shown in
Fig. 4. At low frequencies, the noise power spectrum has 1 / f
dependence.

For � and A0 much smaller than the typical impurity level
spacing � and temperature T, the analytical solution for the
spectral density of noise �23� is given by

SQ��� � �
l�

4vl
2�1 − tanh2� ̃l�

2T
�� �l��̃l��

�2 + 4�l��̃l��2 ,

�26�

where ̃l�=l+U�nl,−�� and �l��̃l��=Im �ll�
A �̃l�� is the

broadening of the impurity energy levels due to Andreev
processes. This broadening corresponds to the fluctuations of
the impurity occupations changing the electrostatic environ-
ment of the qubit, and thus causing dephasing. From Eq.
�26�, one can see that SQ��� is given by a sum of Lorentzians
with different widths, which under proper distribution of �l
gives rise to a 1 / f noise spectrum �see below�. Given that the
charge density fluctuations via Andreev processes involve
two impurities with energies of the order of T, the probability
to find two such impurities is proportional to �T /D�2 with D
being the impurity energy bandwidth, and thus, SQ����T2 at
low frequencies as seen experimentally.18,19

For the 1 / f spectrum to arise from Eq. �26�, the distribu-
tion of �l has to be lognormal. In order to have such a dis-
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tribution, the density of the charge traps has to be small so
that the dominant contribution to the self-energy in Eq. �25�
comes from a few pairs of impurity sites, which are selected
from the sum because of the energy conservation and dis-
tance constraint. Then, the switching rate �l�exp�−2�rl
−r j� /��� for a certain j 	see Eq. �14�
. Since the distances
between the charge traps are uniformly distributed, the prob-
ability of finding a switching rate � is P����1 /�, leading to
1 / f noise. In the opposite limit of large density of charge
traps, many sites j contribute to the sum in Eq. �25�, and the
switching rates �l self-average and become approximately
the same for all sites. Note that unlike in the theory of 1 / f
charge noise produced by fluctuating two-level systems in
the substrate with log-uniform distribution in the tunnel
splitting,42 the emergence of the 1 / f noise within Andreev-
fluctuator model has a qualitatively different geometrical ori-
gin due to the exponential dependence of the rate �l on the
distance between different impurity sites. This finding of the
geometric origin of the 1 / f noise in the Andreev-fluctuator
model is an important result of our work.

We note that the model of charge traps with no on-site
repulsion U=0 	Eq. �21�
 does not lead to 1 / f noise because
in this case the self-energy is dominated by the two-electron
tunneling from the same site. The contributions to the self-
energy from Andreev processes involving other sites are ex-
ponentially smaller than the dominant term, and the distribu-
tion of the rates in Eq. �26� is not lognormal. Therefore, we
emphasize that the realistic model for 1 / f noise due to An-
dreev processes should include both spinful fermions �to cor-
rectly describe the dynamics of charge fluctuations�, and
large on-site repulsion �to prevent double-electron occupa-
tion�.

At high frequencies ��� ,T, the spectral density SQ���
has resonances corresponding to the virtual processes of cor-
related two-electron tunneling from �to� the impurity sites in

the insulator. These resonances describing manifestly
quantum-mechanical processes can be seen in Fig. 4 at high
frequencies. Their contribution to the decoherence of the qu-
bit is suppressed by a factor Fn��t� /�2, see Eq. �22�. How-
ever, going beyond the pure dephasing model, T1�T2, con-
sidered here, one can show that correlated two-electron
tunneling processes contribute to the energy relaxation of the
qubit.21

V. INFLUENCE OF PULSES ON DECOHERENCE

The time dependence of the decoherence function Wn�t�
under a pulse sequence is given by Eqs. �20�–�22�, showing
that the noise contribution is modulated by a filter function
Fn��t�. For the FID F0��t�=2 sin2	�t /2
, whereas for SE
we have F1��t�=8 sin4	�t /4
 suppressing the low-frequency
���4 / t� part of SQ���. In general, higher-order pulse se-
quences act as more efficient high-pass filters of environmen-
tal noise, i.e., for n pulses applied in time t only frequencies
��2n / t contribute to �n�t�. Due to the formal analogy be-
tween Eq. �22� and the solution for the decoherence under
classical Gaussian noise, the analysis given for the latter case
in Ref. 37 also applies here as long as the time expansion is
valid. The results relevant for the noise spectral density de-
rived here can be summarized as follows: For SQ����1 /��,
we obtain �n�t�� t1+� /n� for all sequences applicable to the
pure dephasing case, i.e., the CPMG sequence,28 periodic
dynamical decoupling,30 concatenations of SE,33,34 and Uh-
rig’s sequence.2 Thus, sequences beyond SE should lead to a
further increase in coherence time for the 1 / f spectral den-
sity of noise.32,35,37 For a noise spectrum without sharp ultra-
violet cutoff, which is the case considered here, the CPMG
sequence marginally outperforms other sequences.29,37 Fur-
thermore, taking into account the simplicity of the CPMG
sequence �defined by �1=�n+1= t /2n and all the other �i
= t /n�, we believe that it is a preferred approach of noise
suppression for the problem at hand.37 We therefore propose
that detailed experimental investigation of superconducting
charge qubit dephasing behavior be carried out in order to
test our specific predictions.

VI. CONCLUSION

We consider the spin-fermion model for quantum deco-
herence in solid-state qubits in the pure dephasing �i.e., T1
�T2� situation. We map the evolution of the qubit interacting
with the fermionic environment, possibly subject to various
�-pulse sequences onto the Keldysh path integral. This ap-
proach is very general and allows one to apply well-
developed many-body techniques to the problem of the evo-
lution of the qubit coupled to the environment and driven by
pulses. In the short-time limit, we derive the expression for
the qubit decoherence, which involves the product of the
noise spectral density due to quantum fluctuations of the bath
and the filter function representing a particular pulse se-
quence. For a nontrivial interacting model of the bath, the
Andreev-fluctuator model, we show that the spectral density
has 1 / f dependence at low frequencies. Finally, we discuss
the optimal strategy for the suppression of 1 / f charge noise

FIG. 4. �Color online� Log-log plot of the noise spectral density
SQ��� for Andreev-fluctuator model. The plot is obtained by ran-
domly generating the positions rl� 	−5,5
� and energies l

� 	−1,1
 K of 50 impurity sites and then numerically integrating
Eq. �23�. Here we assumed that vi=v, on-site repulsion U→	, and
the sites are occupied with equal number of electrons with spins up
and down. We used pF

−1=10−2�, A0=0.1 K, and T=0.1 K. The
dashed �blue� and dot-dashed �black� lines, shown for comparison,
correspond to 1 / f and 1 / f1.3 noise spectra.
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by the application of higher-order �beyond spin echo� pulse
sequences for the problem at hand. One of our concrete con-
clusions of experimental significance is that the well-
established CPMG pulse sequence should be an optimal
method for fighting T2 dephasing when the noise spectrum
has no sharp ultraviolet cutoff.
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